Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 325(5): C1276-C1293, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37746697

RESUMO

Disuse-induced muscle atrophy is a common clinical problem observed mainly in older adults, intensive care units patients, or astronauts. Previous studies presented biological sex divergence in progression of disuse-induced atrophy along with differential changes in molecular mechanisms possibly underlying muscle atrophy. The aim of this study was to perform transcriptomic profiling of male and female mice during the onset and progression of unloading disuse-induced atrophy. Male and female mice underwent hindlimb unloading (HU) for 24, 48, 72, and 168 h (n = 8/group). Muscles were weighed for each cohort and gastrocnemius was used for RNA-sequencing analysis. Females exhibited muscle loss as early as 24 h of HU, whereas males after 168 h of HU. In males, pathways related to proteasome degradation were upregulated throughout 168 h of HU, whereas in females these pathways were upregulated up to 72 h of HU. Lcn2, a gene contributing to regulation of myogenesis, was upregulated by 6.46- to 19.86-fold across all time points in females only. A reverse expression of Fosb, a gene related to muscle degeneration, was observed between males (4.27-fold up) and females (4.57-fold down) at 24-h HU. Mitochondrial pathways related to tricarboxylic acid (TCA) cycle were highly downregulated at 168 h of HU in males, whereas in females this downregulation was less pronounced. Collagen-related pathways were consistently downregulated throughout 168 h of HU only in females, suggesting a potential biological sex-specific protective mechanism against disuse-induced fibrosis. In conclusion, females may have protection against HU-induced skeletal muscle mitochondrial degeneration and fibrosis through transcriptional mechanisms, although they may be more vulnerable to HU-induced muscle wasting compared with males.NEW & NOTEWORTHY Herein, we have assessed the transcriptomic response across biological sexes during the onset and progression of unloading disuse-induced atrophy in mice. We have demonstrated an inverse expression of Fosb between males and females, as well as differentially timed patterns of expressing atrophy-related pathways between sexes that are concomitant to the accelerated atrophy in females. We also identified in females signs of mechanisms to combat disuse-induced mitochondrial degeneration and fibrosis.


Assuntos
Elevação dos Membros Posteriores , Transcriptoma , Humanos , Camundongos , Masculino , Feminino , Animais , Idoso , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Fibrose , Membro Posterior/metabolismo
2.
J Physiol ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563881

RESUMO

Circadian rhythms are ∼24 h cycles evident in behaviour, physiology and metabolism. The molecular mechanism directing circadian rhythms is the circadian clock, which is composed of an interactive network of transcription-translation feedback loops. The core clock genes include Bmal1, Clock, Rev-erbα/ß, Per and Cry. In addition to keeping time, the core clock regulates a daily programme of gene expression that is important for overall cell homeostasis. The circadian clock mechanism is present in all cells, including skeletal muscle fibres, and disruption of the muscle clock is associated with changes in muscle phenotype and function. Skeletal muscle atrophy is largely associated with a lower quality of life, frailty and reduced lifespan. Physiological and genetic modification of the core clock mechanism yields immune dysfunction, alters inflammatory factor expression and secretion and is associated with skeletal muscle atrophy in multiple conditions, such as ageing and cancer cachexia. Here, we summarize the possible interplay between the circadian clock modulation of immune cells, systemic inflammatory status and skeletal muscle atrophy in chronic inflammatory conditions. Although there is a clear disruption of circadian clocks in various models of atrophy, the mechanism behind such alterations remains unknown. Understanding the modulatory potential of muscle and immune circadian clocks in inflammation and skeletal muscle health is essential for the development of therapeutic strategies to protect skeletal muscle mass and function of patients with chronic inflammation.

3.
J Appl Physiol (1985) ; 135(3): 655-672, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37535708

RESUMO

Cancer cachexia is clinically defined by involuntary weight loss >5% in <6 mo, primarily affecting skeletal muscle. Here, we aimed to identify sex differences in the onset of colorectal cancer cachexia with specific consideration to skeletal muscle contractile and metabolic functions. Eight-weeks old BALB/c mice (69 males, 59 females) received subcutaneous C26 allografts or PBS vehicle. Tumors were developed for 10-, 15-, 20-, or 25 days. Muscles and organs were collected, in vivo muscle contractility, protein synthesis rate, mitochondrial function, and protein turnover markers were assessed. One-way ANOVA within sex and trend analysis between sexes were performed, P < 0.05. Gastrocnemius and tibialis anterior (TA) muscles became atrophic in male mice at 25 days, whereas female mice exhibited no significant differences in muscle weights at endpoints despite presenting hallmarks of cancer cachexia (fat loss, hepatosplenomegaly). We observed lowered muscle contractility and protein synthesis concomitantly to muscle mass decay in males, with higher proteolytic markers in muscles of both sexes. mRNA of Opa1 was lower in TA, whereas Bnip3 was higher in gastrocnemius after 25 days in male mice, with no significant effect in female mice. Our data suggest relative protections to skeletal muscle in females compared with males despite other canonical signs of cancer cachexia and increased protein degradation markers; suggesting we should place onus upon nonmuscle tissues during early stages of cancer cachexia in females. We noted potential protective mechanisms relating to skeletal muscle contractile and mitochondrial functions. Our findings underline possible heterogeneity in onset of cancer cachexia between biological sexes, suggesting the need for sex-specific approaches to treat cancer cachexia.NEW & NOTEWORTHY Our study demonstrates biological-sex differences in phenotypic characteristics of cancer cachexia between male and female mice, whereby females display many common characteristics of cachexia (gonadal fat loss and hepatosplenomegaly), protein synthesis markers alterations, and common catabolic markers in skeletal muscle despite relatively preserved muscle mass in early-stage cachexia compared with males. Mechanisms of cancer cachexia appear to differ between sexes. Data suggest need to place onus of early cancer cachexia detection and treatment on nonmuscle tissues in females.


Assuntos
Caquexia , Neoplasias , Feminino , Masculino , Animais , Camundongos , Caquexia/metabolismo , Neoplasias/complicações , Neoplasias/patologia , Músculo Esquelético/metabolismo , Redução de Peso , Mitocôndrias/metabolismo , Atrofia Muscular/metabolismo
4.
BMC Genomics ; 24(1): 374, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403010

RESUMO

BACKGROUND: Cancer-cachexia (CC) is a debilitating condition affecting up to 80% of cancer patients and contributing to 40% of cancer-related deaths. While evidence suggests biological sex differences in the development of CC, assessments of the female transcriptome in CC are lacking, and direct comparisons between sexes are scarce. This study aimed to define the time course of Lewis lung carcinoma (LLC)-induced CC in females using transcriptomics, while directly comparing biological sex differences. RESULTS: We found the global gene expression of the gastrocnemius muscle of female mice revealed biphasic transcriptomic alterations, with one at 1 week following tumor allograft and another during the later stages of cachexia development. The early phase was associated with the upregulation of extracellular-matrix pathways, while the later phase was characterized by the downregulation of oxidative phosphorylation, electron transport chain, and TCA cycle. When DEGs were compared to a known list of mitochondrial genes (MitoCarta), ~ 47% of these genes were differently expressed in females exhibiting global cachexia, suggesting transcriptional changes to mitochondrial gene expression happens concomitantly to functional impairments previously published. In contrast, the JAK-STAT pathway was upregulated in both the early and late stages of CC. Additionally, we observed a consistent downregulation of Type-II Interferon signaling genes in females, which was associated with protection in skeletal muscle atrophy despite systemic cachexia. Upregulation of Interferon signaling was noted in the gastrocnemius muscle of cachectic and atrophic male mice. Comparison of female tumor-bearing mice with males revealed ~ 70% of DEGs were distinct between sexes in cachectic animals, demonstrating dimorphic mechanisms of CC. CONCLUSION: Our findings suggest biphasic disruptions in the transcriptome of female LLC tumor-bearing mice: an early phase associated with ECM remodeling and a late phase, accompanied by the onset of systemic cachexia, affecting overall muscle energy metabolism. Notably, ~ 2/3 of DEGs in CC are biologically sex-specific, providing evidence of dimorphic mechanisms of cachexia between sexes. Downregulation of Type-II Interferon signaling genes appears specific to CC development in females, suggesting a new biological sex-specific marker of CC not reliant on the loss of muscle mass, that might represent a protective mechanism against muscle loss in CC in female mice.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Feminino , Masculino , Camundongos , Animais , Caquexia/genética , Caquexia/metabolismo , Caquexia/patologia , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Transcriptoma , Interferons/metabolismo
5.
Am J Physiol Cell Physiol ; 324(5): C1101-C1109, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971422

RESUMO

MicroRNAs (miRs) control stem cell biology and fate. Ubiquitously expressed and conserved miR-16 was the first miR implicated in tumorigenesis. miR-16 is low in muscle during developmental hypertrophy and regeneration. It is enriched in proliferating myogenic progenitor cells but is repressed during differentiation. The induction of miR-16 blocks myoblast differentiation and myotube formation, whereas knockdown enhances these processes. Despite a central role for miR-16 in myogenic cell biology, how it mediates its potent effects is incompletely defined. In this investigation, global transcriptomic and proteomic analyses after miR-16 knockdown in proliferating C2C12 myoblasts revealed how miR-16 influences myogenic cell fate. Eighteen hours after miR-16 inhibition, ribosomal protein gene expression levels were higher relative to control myoblasts and p53 pathway-related gene abundance was lower. At the protein level at this same time point, miR-16 knockdown globally upregulated tricarboxylic acid (TCA) cycle proteins while downregulating RNA metabolism-related proteins. miR-16 inhibition induced specific proteins associated with myogenic differentiation such as ACTA2, EEF1A2, and OPA1. We extend prior work in hypertrophic muscle tissue and show that miR-16 is lower in mechanically overloaded muscle in vivo. Our data collectively point to how miR-16 is implicated in aspects of myogenic cell differentiation. A deeper understanding of the role of miR-16 in myogenic cells has consequences for muscle developmental growth, exercise-induced hypertrophy, and regenerative repair after injury, all of which involve myogenic progenitors.


Assuntos
MicroRNAs , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Proteoma/genética , Proteômica , Transcriptoma/genética , Animais , Camundongos
6.
J Biol Chem ; 298(11): 102515, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150502

RESUMO

Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris. With these datasets, we define global and Myc-specific dynamics at the onset of mechanical overload-induced muscle fiber growth. Data collation across analyses reveals an under-appreciated role for the muscle fiber in extracellular matrix remodeling during adaptation, along with the contribution of mRNA stability to epigenetic-related transcript levels in muscle. We also identify Runx1 and Ankrd1 (Marp1) as abundant myonucleus-enriched loading-induced genes. We observed that a strong induction of cell cycle regulators including Myc occurs with mechanical overload in myonuclei. Additionally, in vivo Myc-controlled gene expression in the plantaris was defined using a genetic muscle fiber-specific doxycycline-inducible Myc-overexpression model. We determined Myc is implicated in numerous aspects of gene expression during early-phase muscle fiber growth. Specifically, brief induction of Myc protein in muscle represses Reverbα, Reverbß, and Myh2 while increasing Rpl3, recapitulating gene expression in myonuclei during acute overload. Experimental, comparative, and in silico analyses place Myc at the center of a stable and actively transcribed, loading-responsive, muscle fiber-localized regulatory hub. Collectively, our experiments are a roadmap for understanding global and Myc-mediated transcriptional networks that regulate rapid remodeling in postmitotic cells. We provide open webtools for exploring the five RNA-seq datasets as a resource to the field.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Camundongos , Animais , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hipertrofia/metabolismo , Perfilação da Expressão Gênica
7.
Appl Physiol Nutr Metab ; 47(9): 933-948, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700525

RESUMO

Cancer cachexia (CC) accounts for 20%-40% of cancer-related deaths. Mitochondrial aberrations have been shown to precede muscle atrophy in different atrophy models, including cancer. Therefore, this study investigated potential protection from the cachectic phenotype through overexpression of peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α). First, to establish potential of mitochondria-based approaches we showed that the mitochondrial antioxidant MitoTEMPO (MitoT) attenuates myotube atrophy induced by Lewis lung carcinoma (LLC) cell conditioned media. Next, cachexia was induced in muscle-specific PGC-1α overexpressing (MCK-PCG1α) or wildtype (WT) littermate mice by LLC implantation. MCK-PCG1α did not protect LLC-induced muscle mass loss. In plantaris, Atrogin mRNA content was 6.2-fold and ∼11-fold greater in WT-LLC vs WT-phosphate-buffered saline (PBS) for males and females, respectively (p < 0.05). MitoTimer red:green ratio for male PGC was ∼65% higher than WT groups (p < 0.05), with ∼3-fold more red puncta in LLC than PBS (p < 0.05). Red:green ratio was ∼56% lower in females WT-LLC vs PGC-LLC (p < 0.05). In females, no change in red puncta was noted across conditions. Lc3 mRNA content was ∼73% and 2-fold higher in male and female LLC mice, respectively, vs PBS (p < 0.05). While MitoT could mitigate cancer-induced atrophy in vitro, PGC-1α overexpression was insufficient to protect muscle mass and mitochondrial health in vivo despite mitigation of cachexia-associated signaling pathways.


Assuntos
Carcinoma Pulmonar de Lewis , Doenças Musculares , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Caquexia/etiologia , Caquexia/prevenção & controle , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Feminino , Masculino , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Doenças Musculares/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/metabolismo
8.
Am J Physiol Endocrinol Metab ; 322(3): E278-E292, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35068192

RESUMO

microRNAs (miRs) are linked to various human diseases including type 2 diabetes mellitus (T2DM) and emerging evidence suggests that miRs may serve as potential therapeutic targets. Lower miR-16 content is consistent across different models of T2DM; however, the role of miR-16 in muscle metabolic health is still elusive. Therefore, the purpose of this study was to investigate how deletion of miR-16 in mice affects skeletal muscle metabolic health and contractile function in both sexes. This study was conducted using both 1) in vitro and 2) in vivo experiments. In in vitro experiments, we used C2C12 myoblasts to test if inhibition or overexpression of miR-16 affected insulin-mediated glucose handling. In in vivo experiments, we generated muscle-specific miR-16 knockout (KO) mice fed a high-fat diet (HFD) to assess how miR-16 content impacts metabolic and contractile properties including glucose tolerance, insulin sensitivity, muscle contractile function, protein anabolism, and mitochondrial network health. In in vitro experiments, although inhibition of miR-16 induced impaired insulin signaling (P = 0.002) and glucose uptake (P = 0.014), overexpression of miR-16 did not attenuate lipid overload-induced insulin resistance using the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol. In in vivo experiments, miR-16 deletion induced both impaired muscle contractility (P = 0.031-0.033), and mitochondrial network health (P = 0.008-0.018) in both sexes. However, although males specifically exhibited impaired insulin sensitivity following miR-16 deletion (P = 0.030), female KO mice showed pronounced glucose intolerance (P = 0.046), corresponding with lower muscle weights (P = 0.015), and protein hyperanabolism (P = 0.023). Our findings suggest distinct sex differences in muscle adaptation in response to miR-16 deletion and miR-16 may serve as a key regulator for metabolic dysregulation in T2DM.NEW & NOTEWORTHY We set to investigate the role of miR-16 in skeletal muscle during diet-induced insulin resistance. Our data provide novel evidence that the lack of miR-16 induced multiple aberrations in insulin sensitivity, muscle contractility, mitochondrial network health, and protein turnover in a sex-dependent manner. Interestingly, miR-16 deletion leads to insulin resistance in males and exacerbated glucose intolerance in females, suggesting different mechanisms of metabolic dysregulation with a lack of miR-16 between sexes.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , MicroRNAs , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Feminino , Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo
9.
J Appl Physiol (1985) ; 132(1): 58-72, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762526

RESUMO

Cancer cachexia (CC) results in impaired muscle function and quality of life and is the primary cause of death for ∼20%-30% of patients with cancer. We demonstrated mitochondrial degeneration as a precursor to CC in male mice; however, whether such alterations occur in females is currently unknown. The purpose of this study was to elucidate muscle alterations in CC development in female tumor-bearing mice. Sixty female C57BL/6J mice were injected with PBS or Lewis lung carcinoma at 8 wk of age, and tumors developed for 1, 2, 3, or 4 wk to assess the time course of cachectic development. In vivo muscle contractile function, protein fractional synthetic rate (FSR), protein turnover, and mitochondrial health were assessed. Three- and four-week tumor-bearing mice displayed a dichotomy in tumor growth and were reassigned to high tumor (HT) and low tumor (LT) groups. HT mice exhibited lower soleus, tibialis anterior, and fat weights than PBS mice. HT mice showed lower peak isometric torque and slower one-half relaxation time than PBS mice. HT mice had lower FSR than PBS mice, whereas E3 ubiquitin ligases were greater in HT than in other groups. Bnip3 (mitophagy) and pMitoTimer red puncta (mitochondrial degeneration) were greater in HT mice, whereas Pgc1α1 and Tfam (mitochondrial biogenesis) were lower in HT mice than in PBS mice. We demonstrate alterations in female tumor-bearing mice where HT exhibited greater protein degradation, impaired muscle contractility, and mitochondrial degeneration compared with other groups. Our data provide novel evidence for a distinct cachectic development in tumor-bearing female mice compared with previous male studies.NEW & NOTEWORTHY Our study demonstrates divergent tumor development and tissue wasting within 3- and 4-wk mice, where approximately half the mice developed large tumors and subsequent cachexia. Unlike previous male studies, where metabolic perturbations precede the onset of cachexia, females appear to exhibit protections from the metabolic perturbations and cachexia development. Our data provide novel evidence for divergent cachectic development in tumor-bearing female mice compared with previous male CC studies, suggesting different mechanisms of CC between sexes.


Assuntos
Caquexia , Neoplasias , Animais , Caquexia/etiologia , Caquexia/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Neoplasias/patologia , Qualidade de Vida
10.
J Cachexia Sarcopenia Muscle ; 12(3): 717-730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675163

RESUMO

BACKGROUND: Muscle atrophy is a common pathology associated with disuse, such as prolonged bed rest or spaceflight, and is associated with detrimental health outcomes. There is emerging evidence that disuse atrophy may differentially affect males and females. Cellular mechanisms contributing to the development and progression of disuse remain elusive, particularly protein turnover cascades. The purpose of this study was to investigate the initial development and progression of disuse muscle atrophy in male and female mice using the well-established model of hindlimb unloading (HU). METHODS: One hundred C57BL/6J mice (50 male and 50 female) were hindlimb suspended for 0 (control), 24, 48, 72, or 168 h to induce disuse atrophy (10 animals per group). At designated time points, animals were euthanized, and tissues (extensor digitorum longus, gastrocnemius, and soleus for mRNA analysis, gastrocnemius and extensor digitorum longus for protein synthesis rates, and tibialis anterior for histology) were collected for analysis of protein turnover mechanisms (protein anabolism and catabolism). RESULTS: Both males and females lost ~30% of tibialis anterior cross-sectional area after 168 h of disuse. Males had no statistical difference in MHCIIB fibre area, whereas unloaded females had ~33% lower MHCIIB cross-sectional area by 168 h of unloading. Both males and females had lower fractional protein synthesis rates (FSRs) within 24-48 h of HU, and females appeared to have a greater reduction compared with males within 24 h of HU (~23% lower FSRs in males vs. 40% lower FSRs in females). Males and females exhibited differential patterns and responses in multiple markers of protein anabolism, catabolism, and myogenic capacity during the development and progression of disuse atrophy. Specifically, females had greater mRNA inductions of catabolic factors Ubc and Gadd45a (~4-fold greater content in females compared with ~2-fold greater content in males) and greater inductions of anabolic inhibitors Redd1 and Deptor with disuse across multiple muscle tissues exhibiting different fibre phenotypes. CONCLUSIONS: These results suggest that the aetiology of disuse muscle atrophy is more complicated and nuanced than previously thought, with different responses based on muscle phenotypes and between males and females, with females having greater inductions of atrophic markers early in the development of disuse atrophy.


Assuntos
Atrofia Muscular , Transtornos Musculares Atróficos , Animais , Feminino , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Transtornos Musculares Atróficos/etiologia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...